难点讲解(五)
难点 函数方程思维
函数与方程思维是最重要的一种数学思维,高考中所占比重较大,归纳常识多、题型多、运用窍门多.函数思维简略,行将所研讨的疑问凭借树立函数联络式亦或结构中心函数,联络初等函数的图象与性质,加以剖析、转化、处理有关求值、解(证)不等式、解方程以及评论参数的取值规模等疑问;方程思维行将疑问中的数量联络运用数学言语转化为方程模型加以处理.
难点磁场
1.()对于x的不等式232x–3x+a2–a–3>0,当0≤x≤1时恒树立,则实数a的取值规模为 .
2.()对于函数f(x),若存在x0∈R,使f(x0)=x0树立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)
(1)若a=1,b=–2时,求f(x)的不动点;
(2)若对恣意实数b,函数f(x)恒有两个相异的不动点,求a的取值规模;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B对于直线y=kx+ 对称,求b的最小值.
声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)网站文章免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。
本文地址:http://www.fjeduzs.com.cn/gsxw/21595.html